Media mobile esponenziale - EMA Abbattere media mobile esponenziale - EMA Il 12 e 26 giorni EMAs sono i più popolari medie a breve termine, e sono utilizzati per creare indicatori come la media mobile di convergenza divergenza (MACD) e l'oscillatore prezzo percentuale (PPO). In generale, il 50 e 200 giorni EMA sono utilizzati come segnali di tendenze a lungo termine. I commercianti che utilizzano l'analisi tecnica trovano medie mobili molto utili e penetranti se applicato correttamente, ma creano il caos quando viene utilizzato in modo improprio o sono male interpretato. Tutte le medie mobili comunemente utilizzati in analisi tecnica sono, per loro stessa natura, gli indicatori in ritardo di sviluppo. Di conseguenza, le conclusioni tratte da applicare una media mobile a un particolare schema di mercato dovrebbe essere quello di confermare una mossa di mercato o ad indicare la sua forza. Molto spesso, nel momento di una linea dell'indicatore di media mobile ha fatto un cambiamento per riflettere un movimento significativo nel mercato, il punto ottimale di ingresso sul mercato è già passato. Un EMA non serve per alleviare questo dilemma certa misura. Poiché il calcolo EMA mette più peso sui dati più recenti, si abbraccia l'azione dei prezzi un po 'più stretto e quindi reagisce più veloce. Ciò è desiderabile quando un EMA è usato per derivare un segnale di entrata negoziazione. Interpretazione del EMA Come tutti si muovono gli indicatori medi, sono molto più adatti per trend dei mercati. Quando il mercato è in una tendenza rialzista forte e sostenuta. la linea dell'indicatore EMA mostrerà anche una tendenza rialzista e viceversa per un trend verso il basso. Un operatore vigile non solo prestare attenzione alla direzione della linea EMA ma anche il rapporto tra il tasso di variazione da un bar all'altro. Per esempio, come l'azione prezzo di un forte rialzo comincia ad appiattirsi e invertire, il tasso di variazione EMA da un bar all'altro comincerà a diminuire fino al momento che la linea indicatrice appiattisce e il tasso di variazione è zero. A causa dell'effetto ritardo, da questo punto, o anche qualche bar prima, l'azione di prezzo dovrebbe già invertito. Ne consegue che osservare una diminuzione consistente del tasso di variazione della EMA potrebbe esso stesso essere usata come indicatore che potrebbe contrastare ulteriormente il dilemma causato dall'effetto ritardo di media mobile. Utilizzi comuni del EMA EMA sono comunemente usati in combinazione con altri indicatori per confermare significativi movimenti del mercato e di valutare la loro validità. Per gli operatori che commerciano intraday e mercati in rapida evoluzione, l'EMA è più applicabile. Molto spesso i commercianti usano EMAs per determinare un bias di trading. Ad esempio, se un EMA su un grafico giornaliero mostra una forte tendenza al rialzo, una strategia di trader intraday può essere quella di commerciare solo dal lato lungo su un chart. Introduction intraday a ARIMA: modelli non stagionali ARIMA (p, d, q) l'equazione di previsione : modelli ARIMA sono, in teoria, la classe più generale di modelli per prevedere una serie temporale che può essere fatto per essere 8220stationary8221 dalla differenziazione (se necessario), forse in combinazione con trasformazioni non lineari come registrazione o sgonfiando (se necessario). Una variabile casuale che è una serie temporale è stazionaria se le sue proprietà statistiche sono tutte costanti nel tempo. Una serie stazionaria ha alcuna tendenza, le sue variazioni intorno la sua media hanno una ampiezza costante, e dimena in modo coerente. ossia suoi schemi temporali casuale breve termine sempre lo stesso aspetto in senso statistico. Quest'ultima condizione implica che le sue autocorrelazioni (correlazioni con i propri precedenti deviazioni dalla media) rimangono costanti nel tempo, o equivalentemente, che il suo spettro di potenza rimane costante nel tempo. Una variabile casuale di questa forma può essere visto (come al solito) come una combinazione di segnale e rumore, e il segnale (se risulta) potrebbe essere un modello di regressione medio veloce o lento, o oscillazione sinusoidale, o rapida alternanza di segno , e potrebbe anche avere una componente stagionale. Un modello ARIMA può essere visto come un 8220filter8221 che cerca di separare il segnale dal rumore, e il segnale viene poi estrapolato nel futuro per ottenere delle previsioni. L'equazione di previsione ARIMA per una serie temporale stazionaria è un lineare (cioè la regressione-tipo) equazione in cui i predittori sono costituiti da ritardi della variabile dipendente Andor ritardi degli errori di previsione. Cioè: Valore atteso di Y un andor costante una somma pesata di uno o più valori recenti di Y eo una somma pesata di uno o più valori recenti degli errori. Se i predittori sono costituiti solo di valori ritardati di Y. si tratta di un modello autoregressivo puro (8220self-regressed8221), che è solo un caso particolare di un modello di regressione e che potrebbe essere dotato di un software di regressione standard. Ad esempio, un autoregressiva del primo ordine (8220AR (1) 8221) modello per Y è un modello di regressione semplice in cui la variabile indipendente è semplicemente Y ritardato di un periodo (GAL (Y, 1) in Statgraphics o YLAG1 in RegressIt). Se alcuni dei fattori predittivi sono ritardi degli errori, un modello ARIMA NON è un modello di regressione lineare, perché non c'è modo di specificare period8217s 8220last error8221 come una variabile indipendente: gli errori devono essere calcolati su base periodica-to-periodo quando il modello è montato dati. Dal punto di vista tecnico, il problema con l'utilizzo errori ritardati come predittori è che le previsioni model8217s non sono funzioni lineari dei coefficienti. anche se sono funzioni lineari dei dati passati. Così, i coefficienti nei modelli ARIMA che includono errori ritardati devono essere stimati con metodi di ottimizzazione non lineare (8220hill-climbing8221) piuttosto che da solo risolvere un sistema di equazioni. L 'acronimo ARIMA sta per Auto-regressiva integrato media mobile. Ritardi della serie stationarized nell'equazione di previsione sono chiamati termini quotautoregressivequot, ritardi della errori di previsione sono chiamati quotmoving termini averagequot, e una serie di tempo che deve essere differenziata da effettuare stazionaria si dice che sia una versione quotintegratedquot di una serie stazionaria. modelli casuali di tendenza modelli di livellamento esponenziale casuale passeggiata e, modelli autoregressivi, e sono tutti i casi particolari di modelli ARIMA. Un modello ARIMA nonseasonal è classificato come (p, d, q) modello quot quotARIMA, dove: p è il numero di termini autoregressivi, d è il numero di differenze non stagionali necessari per stazionarietà, e q è il numero di errori di previsione ritardati in l'equazione di previsione. L'equazione di previsione è costruito come segue. In primo luogo, Sia Y il d ° differenza di Y. che significa: Si noti che la seconda differenza di Y (il caso d2) non è la differenza da 2 periodi fa. Piuttosto, è la prima differenza-of-the-prima differenza. che è l'analogo discreto di una derivata seconda, cioè l'accelerazione locale della serie piuttosto che la sua tendenza locale. In termini di y. l'equazione generale di previsione è: Qui i parametri medi in movimento (9528217s) sono definiti in modo tale che i loro segni sono negativi nell'equazione, seguendo la convenzione introdotta da Box e Jenkins. Alcuni autori e software (incluso il linguaggio di programmazione R) definirli in modo che abbiano segni più, invece. Quando i numeri reali sono inseriti nell'equazione, non c'è ambiguità, ma it8217s importante sapere quali convenzione il software utilizza quando si sta leggendo l'output. Spesso i parametri sono indicati lì da AR (1), AR (2), 8230, e MA (1), MA (2), 8230 ecc per identificare il modello ARIMA appropriato per Y. si inizia determinando l'ordine di differenziazione (d) che necessita stationarize serie e rimuovere le caratteristiche lordi di stagionalità, forse in combinazione con una trasformazione varianza stabilizzante come registrazione o sgonfiando. Se ci si ferma a questo punto e prevedere che la serie differenziata è costante, si è semplicemente montato un random walk o modello tendenza casuale. Tuttavia, la serie stationarized potrebbe ancora essere autocorrelato errori, il che suggerisce che un numero di termini AR (p 8805 1) Andor alcuni termini numero MA (q 8805 1) sono necessari anche nell'equazione di previsione. Il processo di determinazione dei valori di p, d, e q che sono meglio per una data serie di tempo saranno discussi nelle sezioni successive di note (i cui collegamenti sono nella parte superiore di questa pagina), ma in anteprima alcuni dei tipi di modelli ARIMA non stagionali che vengono comunemente riscontrato è riportata qui sotto. ARIMA modello autoregressivo (1,0,0) del primo ordine: se la serie è fermo e autocorrelato, forse può essere previsto come multiplo del proprio valore precedente, più una costante. L'equazione di previsione in questo caso è 8230which è Y regredito su se stessa ritardato di un periodo. Questo è un modello constant8221 8220ARIMA (1,0,0). Se la media di Y è zero, allora il termine costante non verrebbe inclusa. Se il coefficiente di pendenza 981 1 è positivo e meno di 1 su grandezza (che deve essere inferiore a 1 a grandezza se Y è fermo), il modello descrive significare-ritornando comportamento in cui il valore prossimi period8217s dovrebbe essere previsto per essere 981 1 volte lontano dalla media come questo period8217s valore. Se 981 1 è negativa, predice significare-ritornando comportamento con alternanza di segni, cioè si prevede anche che Y sarà al di sotto del prossimo periodo media se è al di sopra del periodo di dire questo. In un modello autoregressivo del secondo ordine (ARIMA (2,0,0)), ci sarebbe un termine Y t-2 sulla destra pure, e così via. A seconda dei segni e grandezze dei coefficienti, un (2,0,0) modello ARIMA poteva descrivere un sistema il cui reversione medio avviene in modo sinusoidale oscillante, come il moto di una massa su una molla che viene sottoposta a shock casuali . ARIMA (0,1,0) random walk: Se la serie Y non è fermo, il modello più semplice possibile è un modello casuale, che può essere considerato come un caso limite di un AR (1) modello in cui la autoregressivo coefficiente è uguale a 1, cioè una serie con infinitamente lenta reversione media. L'equazione pronostico per questo modello può essere scritto come: dove il termine costante è la variazione media del periodo a periodo (cioè lungo termine deriva) in Y. Questo modello può essere montato come un modello di regressione non intercetta in cui la prima differenza di Y è la variabile dipendente. Dal momento che include (solo) una differenza non stagionale e di un termine costante, è classificato come un quotARIMA (0,1,0) modello con constant. quot Il caso-roulant senza modello - drift sarebbe un ARIMA (0,1, 0) modello senza costante ARIMA (1,1,0) differenziata modello autoregressivo del primo ordine: Se gli errori di un modello random walk sono autocorrelati, forse il problema può essere risolto con l'aggiunta di un ritardo della variabile dipendente alla previsione equation - - cioè regredendo la prima differenza di Y su se stessa ritardato di un periodo. Ciò produrrebbe la seguente equazione previsione: che possono essere riorganizzate a Questo è un modello autoregressivo del primo ordine con un ordine di differenziazione non stagionale e di un termine costante - i. e. un (1,1,0) modello ARIMA. ARIMA (0,1,1) senza costante livellamento esponenziale semplice: Un'altra strategia per correggere gli errori autocorrelati in un modello random walk è suggerita dal semplice modello di livellamento esponenziale. Ricordiamo che per alcune serie di tempo non stazionaria (ad esempio quelle che presentano fluttuazioni rumorosi intorno a una media lentamente variabile), il modello random walk non esegue così come una media mobile di valori passati. In altre parole, invece di prendere l'osservazione più recente come la previsione della successiva osservazione, è preferibile utilizzare una media degli ultimi osservazioni per filtrare il rumore e più accuratamente stimare la media locale. Il semplice modello di livellamento esponenziale utilizza una media mobile esponenziale ponderata dei valori del passato per ottenere questo effetto. L'equazione pronostico per la semplice modello di livellamento esponenziale può essere scritto in un certo numero di forme matematicamente equivalenti. una delle quali è la cosiddetta forma correction8221 8220error, in cui la precedente previsione viene regolata nella direzione dell'errore fece: Perché e t-1 Y t-1 - 374 t-1 per definizione, questo può essere riscritta come : che è un ARIMA (0,1,1) - senza-costante equazione di previsione con 952 1 1 - 945. Ciò significa che è possibile montare un semplice livellamento esponenziale specificando come un modello ARIMA (0,1,1) senza costante, e il MA stimato (1) coefficiente corrisponde a 1-minus-alfa nella formula SES. Ricordiamo che nel modello SES, l'età media dei dati nelle previsioni 1-periodo-ahead è 1 945. senso che essi tenderanno a restare indietro tendenze o punti di svolta da circa 1 945 periodi. Ne consegue che l'età media dei dati nelle previsioni 1-periodo-prima di un ARIMA (0,1,1) - senza-costante modello è 1 (1-952 1). Così, per esempio, se 952 1 0.8, l'età media è 5. Come 952 1 avvicina 1, il ARIMA (0,1,1) - senza-costante modello diventa un media-molto-lungo termine in movimento, e come 952 1 si avvicina a 0 diventa un modello random walk-senza-drift. What8217s il modo migliore per correggere autocorrelazione: aggiunta termini AR o aggiungendo termini MA Nelle precedenti due modelli di cui sopra, il problema degli errori autocorrelati in un modello casuale è stato fissato in due modi diversi: aggiungendo un valore ritardato della serie differenziata l'equazione o l'aggiunta di un valore ritardato del l'errore di previsione. Quale approccio è meglio Una regola empirica per questa situazione, che sarà discusso più dettagliatamente in seguito, è che autocorrelazione positiva di solito è meglio trattata con l'aggiunta di un termine di AR al modello e negativo autocorrelazione di solito è meglio trattata con l'aggiunta di un MA termine. In serie business e tempo economica, autocorrelazione negativa si pone spesso come un artefatto di differenziazione. (In generale, differenziazione riduce autocorrelazione positiva e può anche provocare un interruttore da positivo a negativo autocorrelazione.) Quindi, il modello ARIMA (0,1,1), in cui la differenziazione è accompagnato da un termine MA, è più spesso utilizzato che un ARIMA (1,1,0) del modello. ARIMA (0,1,1) con costante semplice livellamento esponenziale con la crescita: Con l'implementazione del modello SES come un modello ARIMA, è in realtà guadagnare una certa flessibilità. Prima di tutto, il MA stimata (1) coefficiente è permesso di essere negativo. questo corrisponde ad un fattore di livellamento maggiore di 1 in un modello SES, che normalmente non è consentito dalla procedura model-fitting SES. In secondo luogo, si ha la possibilità di includere un termine costante nel modello ARIMA se lo si desidera, al fine di stimare un andamento medio diverso da zero. L'(0,1,1) modello ARIMA con costante ha l'equazione di previsione: Le previsioni di un periodo a venire da questo modello sono qualitativamente simili a quelle del modello SES, tranne che la traiettoria delle previsioni a lungo termine è in genere un pendenza riga (la cui pendenza è uguale a mu) anziché una linea orizzontale. ARIMA (0,2,1) o (0,2,2) senza costante livellamento esponenziale lineare: lineari modelli di livellamento esponenziale sono modelli ARIMA che utilizzano due differenze non stagionali in collegamento con termini MA. La seconda differenza di una serie Y non è semplicemente la differenza tra Y e si ritardato da due periodi, ma piuttosto è la prima differenza della prima --i. e differenza. il cambiamento-in-the-cambiamento di Y al periodo t. Così, la seconda differenza di Y al periodo t è uguale a (Y t - Y t-1) - (Y t-1 - Y t-2) Y t - 2Y t-1 Y t-2. Una seconda differenza di una funzione discreta è analoga ad una derivata seconda di una funzione continua: misura la quotaccelerationquot o quotcurvaturequot in funzione in un dato punto nel tempo. L'(0,2,2) modello ARIMA senza costante prevede che la seconda differenza della serie è uguale a una funzione lineare delle ultime due errori di previsione: che può essere riorganizzato come: dove 952 1 e 952 2 sono il MA (1) e MA (2) coefficienti. Questo è un modello di livellamento esponenziale lineare generale. essenzialmente lo stesso modello di Holt8217s e Brown8217s modello è un caso speciale. Esso utilizza pesato esponenzialmente medie mobili stimare sia a livello locale e una tendenza locale nella serie. Le previsioni a lungo termine di questo modello convergono ad una retta la cui inclinazione dipende dalla tendenza media osservata verso la fine della serie. ARIMA (1,1,2) senza costante smorzata-trend lineare livellamento esponenziale. Questo modello è illustrato nelle slide di accompagnamento sui modelli ARIMA. Si estrapola la tendenza locale alla fine della serie, ma appiattisce fuori a orizzonti previsionali più lunghi per introdurre una nota di cautela, una pratica che ha supporto empirico. Vedi l'articolo sul quotWhy il Damped Trend worksquot da Gardner e McKenzie e l'articolo quotGolden Rulequot da Armstrong et al. per dettagli. In genere è consigliabile attenersi a modelli in cui almeno uno dei p e q non è maggiore di 1, vale a dire non cercare di adattarsi a un modello come ARIMA (2,1,2), in quanto questo rischia di portare a sovradattamento e le questioni che sono discussi in modo più dettagliato nelle note sulla struttura matematica dei modelli ARIMA quotcommon-factorquot. implementazione foglio di calcolo: modelli ARIMA come quelli sopra descritti sono facili da implementare su un foglio di calcolo. L'equazione previsione è semplicemente una equazione lineare che fa riferimento ai valori passati della serie temporale originale e valori passati degli errori. Così, è possibile impostare un foglio di calcolo di previsione ARIMA memorizzando i dati nella colonna A, la formula di previsione nella colonna B, e gli errori (previsioni di dati meno) nella colonna C. La formula di previsione in una cella tipica nella colonna B sarebbe semplicemente un'espressione lineare, con riferimento ai valori precedenti in file di colonne a e C, moltiplicato per i coefficienti adeguati AR o MA memorizzati nelle cellule in altre parti del Analisi spreadsheet. Technical: medie spostando la maggior parte modelli di grafico mostrano un sacco di variazione nel movimento dei prezzi. Questo può rendere difficile per i commercianti per avere un'idea di una tendenza generale securitys. Un semplice commercianti utilizzare il metodo per combattere questo è quello di applicare le medie mobili. Una media mobile è il prezzo medio di un titolo su un certo lasso di tempo. Tracciando un prezzo medio securitys, il movimento di prezzo è appianato. Una volta che le fluttuazioni giorno per giorno vengono rimossi, gli operatori sono maggiormente in grado di individuare la vera tendenza e aumentare la probabilità che funzioni a loro favore. (Per ulteriori informazioni, leggere le medie mobili tutorial.) Tipi di medie mobili ci sono una serie di diversi tipi di medie che variano nel modo in cui vengono calcolati in movimento, ma come ogni media viene interpretato rimane la stessa. I calcoli si differenziano solo per quanto riguarda il peso che hanno luogo sui dati relativi ai prezzi, passando da uguale ponderazione di ogni fascia di prezzo di più peso di essere immessi sui dati recenti. I tre tipi più comuni di medie mobili sono semplici. lineare ed esponenziale. Media mobile semplice (SMA) Questo è il metodo più comune utilizzato per calcolare la media mobile dei prezzi. Ci vuole semplicemente la somma di tutti i prezzi di chiusura ultimi nel periodo di tempo e divide il risultato per il numero di prezzi utilizzati nel calcolo. Per esempio, in una media mobile di 10 giorni, gli ultimi 10 prezzi di chiusura vengono sommati e poi divisi per 10. Come si può vedere nella figura 1, un trader è in grado di fare la media meno sensibili alle variazioni dei prezzi aumentando il numero dei periodi usati nel calcolo. Aumentando il numero di periodi di tempo nel calcolo è uno dei modi migliori per misurare la forza della tendenza a lungo termine e la probabilità che esso si invertirà. Molte persone sostengono che l'utilità di questo tipo di media è limitato perché ogni punto della serie di dati ha lo stesso impatto sul risultato indipendentemente da dove si verifica nella sequenza. I critici sostengono che i dati più recenti è più importante e, pertanto, dovrebbe anche avere un peso maggiore. Questo tipo di critica è stato uno dei principali fattori che l'invenzione di altre forme di media mobile. Lineare media ponderata Questo indicatore media mobile è il meno comune dei tre e viene utilizzato per affrontare il problema della parità di peso. La media mobile ponderata lineare viene calcolato dalla somma di tutti i prezzi di chiusura per un certo periodo di tempo e la loro riproduzione dalla posizione del punto dati e dividendo per la somma del numero di periodi. Ad esempio, in una media ponderata lineare cinque giorni, diretta prezzo di chiusura è moltiplicato per cinque, ieri da quattro e così via fino a raggiungere il primo giorno nell'intervallo periodo. Questi numeri sono poi sommati e divisi per la somma dei moltiplicatori. Spostare Questo calcolo media esponenziale (EMA) media mobile usa un fattore di livellamento per posizionare un peso maggiore sulle recenti punti di dati ed è considerato molto più efficiente rispetto alla media ponderata lineare. Avendo una comprensione del calcolo non è generalmente richiesto per la maggior parte dei commercianti, perché la maggior parte dei pacchetti grafici fare il calcolo per voi. La cosa più importante da ricordare a proposito la media mobile esponenziale è che è più rispondente alle nuove informazioni relative alla media mobile semplice. Questa risposta è uno dei fattori chiave del perché questa è la media mobile di scelta tra molti operatori tecnici. Come si può vedere nella figura 2, un 15-periodo EMA sale e scende più velocemente di un 15-periodo di SMA. Questa leggera differenza doesnt sembrare molto, ma è un fattore importante essere consapevoli di quanto può influenzare i rendimenti. I principali usi di medie medie mobili mobili sono utilizzati per identificare le tendenze attuali e le inversioni di tendenza, nonché di impostare i livelli di supporto e resistenza. Le medie mobili possono essere utilizzati per identificare rapidamente se un titolo si muove in un rialzo o un ribasso a seconda della direzione della media mobile. Come si può vedere nella figura 3, quando una media mobile si sta dirigendo verso l'alto e il prezzo è al di sopra di esso, la sicurezza è in una tendenza rialzista. Al contrario, un inclinata verso il basso media mobile con il prezzo inferiore può essere usato per segnalare una tendenza al ribasso. Un altro metodo per determinare quantità di moto è quello di esaminare l'ordine di un paio di medie mobili. Quando una media a breve termine è al di sopra di una media di più lungo periodo, la tendenza è alto. D'altra parte, una media a lungo termine di sopra di una media a breve termine segnala un movimento verso il basso del trend. Spostamento di inversioni di tendenza media si formano in due modi: quando il prezzo si muove attraverso una media mobile e quando si muove attraverso lo spostamento crossover medi. Il primo segnale comune è quando il prezzo si muove attraverso una media mobile importante. Ad esempio, quando il prezzo di un titolo che era in una tendenza rialzista scende al di sotto di una media mobile a 50 periodi, come in figura 4, è un segno che il trend rialzista può essere retromarcia. L'altro segnale di inversione di tendenza è quando si muove croci medi attraverso un'altra. Per esempio, come si può vedere nella figura 5, se il 15-giorni mobile croci in media al di sopra della media mobile a 50 giorni, è un segno positivo che il prezzo inizia ad aumentare. Se i periodi usati nel calcolo sono relativamente brevi, per esempio 15 e 35, questo potrebbe segnalare un'inversione tendenza a breve termine. D'altra parte, quando due medie con tempi relativamente lunghi incrociano (50 e 200, per esempio), questo è usato per suggerire un cambiamento a lungo termine di tendenza. Un altro modo importante sono utilizzati medie mobili è quello di identificare i livelli di supporto e resistenza. Non è raro vedere uno stock che è in calo fermare il suo declino e la direzione inversa una volta colpisce l'appoggio di un importante media mobile. Una mossa attraverso un importante media mobile è spesso usato come un segnale da operatori tecnici che la tendenza si sta invertendo. Ad esempio, se il prezzo rompe la media mobile 200 giorni in una direzione verso il basso, è un segnale che il rialzo inverte. Le medie mobili sono un potente strumento per analizzare la tendenza in un titolo. Essi forniscono supporto e resistenza utili punti e sono molto facili da usare. Gli intervalli di tempo più comuni che vengono utilizzati per la creazione di medie mobili sono la 200 giorni, 100 giorni, 50 giorni, 20 giorni e 10 giorni. La media 200 giorni è pensato per essere una buona misura di un anno negoziazione, in media 100 giorni di una metà di un anno, una media di 50 giorni di un quarto di un anno, una media di 20 giorni del mese e 10 media - day di due settimane. Le medie mobili aiutare gli operatori tecnici appianare alcuni dei rumori che si trova in movimenti di prezzo giorno per giorno, di offrire agli operatori una visione più chiara della tendenza dei prezzi. Finora ci siamo concentrati sul movimento dei prezzi, attraverso grafici e medie. Nella sezione successiva, ben guardare alcune altre tecniche utilizzate per confermare movimento dei prezzi e dei modelli. Analisi Tecnica: indicatori e oscillatori
No comments:
Post a Comment